The Effects of Nonnormal Distributions on Confidence Intervals around the Standardized Mean Difference: Bootstrap and Parametric Confidence Intervals
نویسندگان
چکیده
The standardized group mean difference, Cohen’s d, is among the most commonly used and intuitively appealing effect sizes for group comparisons. However, reporting this point estimate alone does not reflect the extent to which sampling error may have led to an obtained value. A confidence interval expresses the uncertainty that exists between d and the population value, δ, it represents. A set of Monte Carlo simulations was conducted to examine the integrity of a noncentral approach analogous to that given by Steiger and Fouladi, as well as two bootstrap approaches in situations in which the normality assumption is violated. Because d is positively biased, a procedure given by Hedges and Olkin is outlined, such that an unbiased estimate of δ can be obtained. The bias-corrected and accelerated bootstrap confidence interval using the unbiased estimate of δ is proposed and recommended for general use, especially in cases in which the assumption of normality may be violated.
منابع مشابه
Estimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring
This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...
متن کاملBootstrap confidence intervals of CNpk for type‑II generalized log‑logistic distribution
This paper deals with construction of confidence intervals for process capability index using bootstrap method (proposed by Chen and Pearn in Qual Reliab Eng Int 13(6):355–360, 1997) by applying simulation technique. It is assumed that the quality characteristic follows type-II generalized log-logistic distribution introduced by Rosaiah et al. in Int J Agric Stat Sci 4(2):283–292, (2008). Discu...
متن کاملExact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean
A Poisson distribution is well used as a standard model for analyzing count data. So the Poisson distribution parameter estimation is widely applied in practice. Providing accurate confidence intervals for the discrete distribution parameters is very difficult. So far, many asymptotic confidence intervals for the mean of Poisson distribution is provided. It is known that the coverag...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملConfidence Intervals for Lower Quantiles Based on Two-Sample Scheme
In this paper, a new two-sampling scheme is proposed to construct appropriate confidence intervals for the lower population quantiles. The confidence intervals are determined in the parametric and nonparametric set up and the optimality problem is discussed in each case. Finally, the proposed procedure is illustrated via a real data set.
متن کامل